基于复小波和支持向量机的纹理分类法  被引量:5

Method of texture classification using dual-tree complex wavelet transform and support vector machines

在线阅读下载全文

作  者:解洪胜[1] 张虹[1] 徐秀[1] 

机构地区:[1]中国矿业大学环境与测绘学院,江苏徐州221008

出  处:《计算机应用研究》2008年第5期1573-1575,1578,共4页Application Research of Computers

基  金:国家自然科学基金资助项目(40401038)

摘  要:针对图像纹理分类问题,提出了一种将二元树复小波变换与支持向量机相结合的分类方法,通过二元树复小波变换对纹理图像进行四层分解,提取各子频带小波系数模的均值和标准方差组成特征向量,利用支持向量机作为分类器实现纹理图像分类。对20类Brodatz纹理图像的分类实验表明,提出的方法具有较高的分类精度,在有限训练样本的情况下比传统的分类算法平均正确率有10%左右的提高,体现了该方法的有效性和良好的泛化能力。A novel method for texture image classification was proposed by using dual-tree complex wavelets transform and support vector machines. The dual-tree complex wavelets transform was used to decompose texture image with four levels, feature vector was generated by computing mean and standard deviation from coefficients of individual wavelet subbands. This feature vector was first used for training and later on for tesing the support vector machine classifier. The experimental setup consists of twenty texture images from the Brodatz image database, results of experimentent indicate that the presented method provide superior texture classification accuracy over other methods under the condition of limited training samples, and show the validity and the best generalization ability.

关 键 词:小波变换 二元树复小波变换 特征提取 支持向量机 纹理分类 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象