检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广东工业大学计算机学院,广东广州510006 [2]广东工业大学自动化学院,广东广州510090
出 处:《系统仿真学报》2008年第10期2584-2588,共5页Journal of System Simulation
基 金:国家自然科学基金重点项目(60534040);广东省自然科学基金自由申请项目(05001819)
摘 要:微粒群算法(PSO)是一种随机群体优化算法,相对于遗传算法等其它的进化算法,它模型简单、操作参数少、智能程度高、运算速度快,已受到许多相关领域学者的关注与研究。但是,标准微粒群算法在寻优过程中往往陷入局部最优解,而不是全局最优解。在研究均匀设计与惰性变异的基础上,提出了改进的微粒群算法(UMPSO)。该算法利用均匀设计的思想来确定算法的初始粒子,以使其均匀分布于解空间,从而使算法以更高的概率、更快的速度找到全局最优解;在进化过程中,对惰性粒子以概率为1进行随机变异,则能够更好地保证微粒群的多样性。仿真结果表明,与标准的PSO相比,UMPSO的寻优精度更高、寻优速度更快。Particle swarm optimization (PSO) is a population-based stochastic optimization technique. It shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). But compared with GA, it has simpler model, fewer parameters, higher intelligence, faster computation, which make it attractive to some researchers. Otherwise, the standard Particle Swarm Optimization often doesn't find global optimal solution, but the local solution. Based on research on uniform design and inertia mutation (UMPSO), an advanced particle swarm optimization was proposed, which initializes population with uniform design to make them distribute in the problem place evenly. This makes UMPSO find the global optimal solution with higher probability and faster velocity. During the process of evolution, UMPSO carries out mutation for the inertia particles with the probability of I, which keeps population diverse. Experimental results show that UMPSO can find optimal solution more precisely and faster than the standard PSO does.
关 键 词:微粒群算法 均匀设计 惰性变异 进化计算 遗传算法
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117