检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中南大学信息科学与工程学院,长沙410083
出 处:《交通运输系统工程与信息》2008年第2期75-79,共5页Journal of Transportation Systems Engineering and Information Technology
摘 要:鉴于模糊神经网络具有良好的非线性特性、学习能力、自适应能力和抗干扰能力,本文将模糊神经网络技术引入到高速公路入口匝道控制中.提出一种基于GA和BP算法的模糊神经网络控制器,并对控制器进行了详细设计.设计过程主要分为三部分:输入输出参数的选择、模糊神经网络的结构设计以及基于GA-BP的学习算法设计.最后,使用MATLAB软件对其进行了仿真.仿真结果表明,本文提出的方法是有效的,较之基于BP的模糊神经网络控制和ALINEA控制,能更好地稳定主线交通流密度.Due to the traits of nonlinear, capacity of study, adaptivity and anti-interference, neural-fuzzy net- work is suitable for the control of ramp metering. A neuro-fuzzy network controller is developed based on GA-BP for the deficiencies of the existing freeway on-ramp control. The controller configuration is determined and the controller parameters are designed in detail. The process of this design involves three parts: the selection of the input parameter and the output parameter, the design of the structure of fuzzy neural network and the algorithm design based on GA-BP. Finally, this neural-fuzzy controller is carried out by means of MATLAB software. The simulation for this controller shows that the method developed is more helpful to level off the density of main line than the method based on BP and the other methods based on ALINEA.
分 类 号:U412.366[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222