视图的k-匿名化方法  

K-anonymization method for views

在线阅读下载全文

作  者:黄立明[1] 宋金玲[1] 刘国华[2] 张奇[2] 

机构地区:[1]河北科技师范学院,河北秦皇岛066004 [2]燕山大学,河北秦皇岛066004

出  处:《计算机工程与应用》2008年第17期115-118,共4页Computer Engineering and Applications

基  金:国家自然科学基金(the National Natural Science Foundation of China under Grant No.60773100) ;教育部科学技术研究重点项目资助 (the Key Project of Chinese Ministry of Education NO.205014)

摘  要:k-匿名是防止链接攻击所造成的发布视图信息泄露的有效方法。在实际应用中往往会同时发布多个视图,如何使视图组满足k-匿名约束亟待解决。首先,分析了视图分别进行概括、保持数据一致性、最小概括情况下,如何使视图组满足k-匿名约束;然后,根据上述各种情况,分别给出了独立概括法、联合概括法和属性概括法等视图组k-匿名化算法。实验证明,所提出的算法都可以有效地使视图组达到k-匿名效果,从而保证发布视图的安全。K-anonymity is a primary method for guaranteeing the security of views,it can provide privacy protection and prevent information disclosure induced by joining attack.In practical application, it is usual that the data owner will publish multiple views at the same time,so,how to make the whole view set satisfy k-anonymity constraint become the most imperative problems in the research of k-anonymity.Previous researches about k-anonymity have concentrated on k-anonymization algorithm for single view, hut these algorithms can not be adopted by views directly.At first,the method how to make views achieving k-anonymity constraint is analyzed under several cases,such as generalizing view separately,preserving dada consistency,mlnimal generalization. Then,based on the analysis under the several cases,the k-anonymization algorithms for views,such as independent generalization, association generalization,attribute generalization,are proposed respectively.The experiment results show that each k-anonymization algorithm for view set can make view set satisfy k-anonymity constraint effectively.So,they can guarantee the security of the views effectively in the process of publishing views.

关 键 词:视图安全 信息泄露 K-匿名 视图组 K-匿名化 

分 类 号:TP309.2[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象