检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]三峡大学三峡库区地质灾害教育部重点实验室,443002
出 处:《灾害与防治工程》2008年第1期47-52,共6页Disaster and Control Engineering
基 金:国家自然科学基金(50379023)
摘 要:基于BP网络和RBF网络理论,选取影响岩质边坡稳定性的一些主要因素,建立了边坡稳定性分析的神经网络模型,并用Matlab7.0神经网络工具箱对一些边坡样本进行训练仿真。对比了两种网络的逼近精度和预测结果,结果表明:两种网络均可以用于边坡的稳定性评价,RBF网络的性能要优于BP网络,网络最优参数的选择要通过反复实验获得。In this paper, the neural analyzing model has been constituted based on BP and RBF Neural Network theories, and the factors that influence the slope stability have been taken into account. The network is then trained and simulation based on slope samples data set by use of the NN toolbox in Matlab 7.0. Comparison between two Networks in the approximate accuracy and prediction results is conducted. The results show that two Neural Networks are both suitable for assessing the stability of rock slope, the RBF model is better than the BP model and the Optimal Selection on the Parameters of Neural Network can be achieved by experiments.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249