一类自治脉冲微分方程的动力学研究  被引量:6

DYNAMICS OF A CLASS OF AUTONOMOUS IMPULSIVE EQUATIONS

在线阅读下载全文

作  者:钱临宁[1] 陆启韶[1] 

机构地区:[1]北京航空航天大学理学院数学系,北京100083

出  处:《动力学与控制学报》2008年第2期97-101,共5页Journal of Dynamics and Control

基  金:国家自然科学基金资助项目(10572011)~~

摘  要:对一类自治脉冲微分方程的动力学性质进行了研究,给出了半平凡周期解的存在与稳定的充分条件,建立Poincaré映射将周期解问题转化为不动点问题.理论分析及数值模拟表明,半平凡周期解通过跨临界分岔获得稳定的正周期-1解.数值模拟显示,随着控制参数的变化,正周期-1解通过倍周期分岔出正周期-2解,再通过一系列倍周期分岔通向混沌.The dynamics of a class of autonomous impulsive differential equation was studied, and the sufficient conditions for the existence and stability of a semi - trivial periodic solution were obtained. The problem of periodic solution was transformed into a fixed - point problem by constructing the Poncare map. Theoretical analysis and numerical results show that a steady positive period - 1 solution bifurcates from the semi - trivial periodic solution through a transcrifical bifurcation. And the numerical results also show that,when the control parameter varies, a positive period -2 solution bifurcates from the positive periodic solution through a flip bifurcation, and the chaotic solution is generated via a cascade of flip bifurcations.

关 键 词:脉冲动力系统 自治脉冲微分方程 跨临界分岔 周期解 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象