检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:艾树利[1]
机构地区:[1]长安大学数学与信息科学系,陕西西安710064
出 处:《纺织高校基础科学学报》2008年第2期211-215,共5页Basic Sciences Journal of Textile Universities
摘 要:考虑加权型Jacobi矩阵的逆问题.基于逐层递退方法,通过特征对给出Jacobi矩阵存在和惟一的充分必要条件,并由特征对构造出此Jacobi矩阵.即当i=1,2,…,k-1时,如果Di≠0且[(μ1-λ)di+λqiDi+(1μ-λ)Mi-1+(1μ-λ)qixiyi+1]/Di>0,那么bi=[(μ1-λ)di+λqiDi+(1μ-λ)Mi-1+(1μ-λ)qixiyi+1]/Di,若Di=0,bi=(μ1qi-1yi-1+μ1qiyi+1-bi-1yi-1)/yi+1,且ai为任意实数.对于i=k,k+1,…,n-1,ai,bi可类似求得.The inverse problem of weighted Jacobi matrices was considered. Based on gradually discussion, in terms of eigenpairs, a necessary and sufficient condition is given so that the solution of the generalized inverse problem of a Jacobi matrix is determined uniquely and the Jacobi matrix is constructed from its generalized eigenpairs. That is,when i=1,2,…,k-1,if Di≠0,[(μ1-λ)di+λqiDi+(μ1-λ)Mi-1+(μ1-λ)qixiyi+1]/Di〉0,then bi=[(μ1-λ)di+λqiDi+(μ1-λ)Mi-1+(μ1-λ)qoxiyi+1]/Di,ai={λpi+[λqi-1-bi-1)xi-1+(λqi-bi)xi+1]/xi,xi≠0,/μipi+[(μ1qi-1-bi-1)yi-1+(μ1qi-bi)/yi+1]/yi,xi=0.If Di=0,bi=(μ1qi-1yi-1+μ1qiyi+1-bi-1yi-1)/yi+1, and ai can be any real number.For i=k,k+1,…,n-1,ai,bi can be calculated similarly,
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145