检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《光电工程》2008年第6期15-19,共5页Opto-Electronic Engineering
摘 要:针对弱小目标对比度较低、边缘模糊、难以准确探测的问题,本文提出一种基于PDE的改进的各向异性扩散滤波算法增强弱小目标。该方法根据各向异性扩散原理,通过改进传统的P-M方程建立新的滤波模型,采用自适应滤波的方法在非目标区进行背景平滑,在局部变化的区域进行锐化处理增强弱小目标,从而达到背景平滑的同时增强边缘的效果。同时可以通过调节参数k和w选择平滑和锐化的程度,以适应不同的环境变化。实验结果表明,该方法能够有效的增强低对比度图像中的弱小目标。In a sensed image of long distance, the gray levels of target and background are hardly distinguishable, which results in a tow-contrast image. Dim-target detection is always a difficult problem. The aim of this paper is to propose an anisotropic diffusion filtering algorithm based on partial differential equation to enhance the dim targets. The algorithm establishes a new filter model by improving the traditional P-M model based on the anisotropic diffusion theory. The proposed method adaptively performs the smoothing process in the faultless areas to make the background uniform, and performs the sharpening process in the variational areas to enhance dim targets. Simultaneously, we can ~elect the smoothing and sharpening degree by adjusting the parameter K and w to satisfy different environments. Experimental results show the efficiency of the proposed diffusion scheme in dim-target enhancement with low-contrast
关 键 词:PDE 各向异性扩散 低对比度图像 图像增强 自适应滤波器
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.74