检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山东大学信息科学与工程学院,济南250100
出 处:《电子与信息学报》2008年第6期1276-1280,共5页Journal of Electronics & Information Technology
基 金:新世纪优秀人才支持计划(NCET-05-0582);教育部博士点专项基金(GrantNo.20050422017)资助课题
摘 要:目前已有的基于学习的人脸超分辨率图像重建算法大都对亮度变化特别是阴影非常敏感,针对这一缺点,该文提出了一种不随光照变化的图像表示方法——对数-小波变换(Log-WT),并在此基础上构造了一种新的人脸超分辨率图像重建算法。该方法首先利用Log-WT变换提取低分辨率图像与光照无关的内在特性,然后借助流形学习的思想建模高分辨率图像和低分辨率图像之间的关系,并对其加入人脸图像的"专用"先验约束,从而同时实现了超分辨率重建和图像增强。仿真结果表明该算法有效克服了传统方法受光照因素影响的缺点,在提高图像分辨率的同时克服了光照因素的影响,特别是对阴影效应的消除具有明显效果,将该方法应用于人脸识别,有效提高了识别率。Most learning-based super-resolution algorithms neglect the illumination problem. In this paper, a new image representation called Logarithmic-Wavelet Transform (Log-WT) is developed for the elimination of the lighting effect in the image. Meanwhile, a Log-WT based method is proposed to combine super-resolution and shadow removing into a single operation. In this method first intrinsic, illumination invariant features of the image are extracted with exploiting logarithmic-wavelet transform. Then an initial estimation of high resolution image is obtained based on the assumption that small patches in low resolution space and patches in high resolution space share the similar local manifold structure. Finally the target high resolution image is reconstructed by applying the special face constraints in pixel domain. Experimental results demonstrate that the proposed method simultaneously achieves single-image super-resolution and image enhancement especially shadow removing. After that, reconstruction results are used for face recognition which improves the recognition rate.
关 键 词:人脸超分辨率 Log-WT变换 流形学习 阴影消除
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222