中位数交叉核实准则  

在线阅读下载全文

作  者:杨瑛[1] 

机构地区:[1]清华大学应用数学系,北京100084

出  处:《科学通报》1997年第18期1935-1937,共3页Chinese Science Bulletin

基  金:国家自然科学基金(批准号:19131033);高等学校博士点基金资助项目

摘  要:考虑非参数中位数回归模型Y_(ni)=g(x_(ni))+ε_(ni),1≤i≤n,(1)其中g:[0,1]|→R是待估计的连续函数,{x_(ni):1≤i≤n}是区间[0,1]上的非随机设计点列,{ε_(ni):1≤i≤n}是iid随机变量,中位数为零,{Y_(ni):1≤i≤n}是观察值.对x∈[0,1],n≥1,记D_(nj)(x)为x的第j个近邻,j=1,2,…,n,即{D_(n1)(x),D_(n2)(x),…,D_(nn)(x)}为{x_(n1),x_(n2),…,x_(nn)}的一个置换,满足|D_(n1)(x)-x|≤|D_(n2)(x)-x|≤…≤D_(nn)(x)-x|,结按自然顺序消去.令Y_(ni)(x)和ε_(ni)(x)分别表示D_(ni)(x)(1≤i≤n)处的观察值和随机变量.下面的估计g_n(h,x)=(?){Y_(n1)(x),Y_(n2)(x),…,Y_(nh)(x)},(2)(?)表示样本中位数,这个估计称为g(x)的最近邻中位数估计(或者局部中位数估计),其中近邻个数h起着光滑参数作用.h的选择对估计的好坏起着决定性的作用.

关 键 词:中位数交叉核实 BAHADUR表示 非参数回归 

分 类 号:O212.7[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象