Banach空间上一类实质为Asplund空间上的Lipschitz函数  

在线阅读下载全文

作  者:史树中 程立新[2] 

机构地区:[1]南开数学研究所,天津300071 [2]江汉石油学院基础部,荆州434102

出  处:《科学通报》1997年第20期2145-2147,共3页Chinese Science Bulletin

摘  要:自Namioka等人基于Asplund的开拓性工作,而提出Asplund空间的概念(即,其非空开凸子集的每个连续凸函数,均在其定义域内的一个稠密的G_δ-集上Fréchet可微的那样一类Banach空间)并证明了“Asplund空间的对偶空间具有Radon-Nikodym性质(RNP)”后,无限维空间上函数的可微性研究,便围绕着Asplund空间广泛而深入地展开(例如,见文献[3]和[4]).随着Stegall将Namioka-Phelps定理的逆定理成功给出,即“若一个Banach空间的对偶具有RNP,则该空间是Asplund空间”,使Asplund空间研究出现一个高潮.因为S-N-Ph特征定理将函数的微分理论、Banach空间几何学。

关 键 词:李普希慈函数 ASPLUND空间 巴拿赫空间 

分 类 号:O177.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象