检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张友旺[1]
出 处:《信息与控制》2008年第3期269-274,共6页Information and Control
摘 要:针对某些仿射非线性系统中各状态变量间呈微分关系的特点,本文提出仅取某些可测状态变量作为动态递归模糊神经网络(dynamic recurrent fuzzy neural network,DRFNN)的输入,而由DRFNN的反馈矩阵描述系统内部动态关系的直接自适应DRFNN控制算法,克服了将系统所有变量作为输入的传统模糊神经网络(traditioanl fuzzy neural network,TFNN)因某些不可测状态变量所导致的不可实现问题.在电液伺服系统中的应用结果表明:直接自适应DRFNN控制算法相对于TFNN控制算法对系统稳态特性的改善具有较大的优越性.For the characteristics that derivative relations exist between states of some affine nonlinear systems, a direct adaptive dynamic recurrent fuzzy neural network (DRFNN) control algorithm is proposed, which takes some measurable state variables as the DRFNN inputs and describes the system inner dynamic relation by the DRFNN feedback matrix. The unrealizable problem caused by some system unmeasurable state variables in traditional fuzzy neural network (TFNN) which takes all the state variables as its inputs is overcome. The results of its application to electro-hydraulic servo system show that direct adaptive DRFNN control algorithm has an advantage over the TFNN control method in improving the steady state characteristics of the system.
关 键 词:仿射非线性系统 自适应动态递归模糊神经网络 电液伺服系统
分 类 号:TH147[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222