检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《数学学报(中文版)》2008年第4期663-670,共8页Acta Mathematica Sinica:Chinese Series
基 金:国家自然科学基金(10471047);广东省自然科学基金(04020077)
摘 要:考虑如下一类含临界指数的类p-Laplacian方程-div(a(|Du|~p)|Du|^(p-2)Du)=:-- |u|^(p^*-2)u+λf(x,u),u∈W_0^(1,p)(Ω),其中Ω∈R^N(N≥2)为有界光滑区域,a:R^+→R为连续函数.由于问题失去紧性,对Palais-Smale序列的分析需要一点技巧.本文利用Lions的集中紧原理,证明了相应泛函I_λ满足(PS)_c条件,再应用Clark临界点定理和亏格的性质,证明了方程无穷多解的存在性.进一步,得到当λ充分小时一个特殊的特征函数的存在性.We consider the p-Laplacian-like equation with critical exponent:-div(a(|Du|^p)|Du|^p-2Du)=|u|^p*-2u+λf(x,u),u∈W0^1,p(Ω),, where Ω∈R^N(N≥2) is a bounded smooth domain and a is a smooth function from R^+ to R. The solutions are obtained by variational methods, the analysis of Palais-Smale sequences requires suitable generalizations of the techniques involved in the study of the corresponding quasilinear problem with lack of compactness. Using the concentration compactness principle of Lions, the result that the associated functional Iλ satisfies the (PS)c con- dition is proved. Applying the Clark's critical theory and the properties of genus, the existence of infinitely many solutions of the problem is obtained. Furthermore, the existence of a special eigenfunction when λ 〉 0 small enough is proved.
关 键 词:类p-Laplacian方程 临界指数 集中紧原理
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49