检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学应用数学系,西安陕西710072
出 处:《数学进展》2008年第3期321-331,共11页Advances in Mathematics(China)
基 金:NSFC(No.10371099).
摘 要:本文建立一类与广义Baouendi-Grushin向量场联系的Hardy不等式.采用的技巧是延伸欧氏空间上的散度定理推出的基本积分不等式和选定适当的向量场.Hardy不等式相应的最佳常数也得到证明.本文结果包括了已有广义Baouendi-Grushin向量场的Hardy不等式.作为应用,讨论了由Baouendi-Grushin向量场构成-退化次椭圆算子的一些性质和刻画了这类向量场构成的非线性算子的一个正解.In this paper we establish a class of Hardy inequalities related to the generalized Baouendi-Grushin vector fields from another view. Our technique is based on an extension of an elementary integral inequality in the Euclidean space by the generalized divergence theorem, and then the choice of suitable vector fields. The best constant is also discussed. Our results contain the well known Hardy inequalities for the class of vector fields. As immediate consequences, we discuss some properties for p-degenerate subelliptic operator and characterize a positive solutions of the nonlinear operator constructed by generalized Baouendi-Grushin vector fields.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222