关于Ka算子与第二Kato谱  

On Ka Operator and the Second Kato Spectra

在线阅读下载全文

作  者:张云南[1] 钟怀杰[2] 林丽琼[3] 

机构地区:[1]厦门大学数学科学学院,福建厦门361005 [2]福建师范大学数学与计算机科学学院,福建福州350007 [3]福州大学数学与计算机科学学院,福建福州350002

出  处:《厦门大学学报(自然科学版)》2008年第4期475-479,共5页Journal of Xiamen University:Natural Science

基  金:国家自然科学基金(10471025,10771034);福建省自然科学基金(S0650009);福建省教育厅基金(JA05211,JB06026);福州大学科技发展基金(2007-XY-11)资助

摘  要:给出Ka算子的定义,讨论N(Ta)与R(Tb)的关系,得到闭子空间Y在T作用下的象T(Y)成为闭子空间的一些条件,进而证明当T∈Φ+(X)时,从R∞(T)到R∞(T)的算子T|R∞(T)是个满射,同时证明当N(T)■R∞(T)时,T|R∞(T)也是个满射,从而说明当T是Ka算子时,T|R∞(T)是个满射;给出第二Kato谱σ′k(T)的定义,证明了σ′k(T)是C中的非空紧子集,也证明了σ′k(T)=σ′k(T*),并讨论σ′k(T)的一些性质以及σ′k(T)与一些常见的本性谱的关系,说明σd(T)■σ′k(T)■σ(T)、σ′k(T)\σB(T)≠Φ、σe(T)\σ′k(T)≠Φ、σ′k(T)■σa(T)∩σsu(T),而且说明当TS=ST时,若TS∈Ka(X),则T∈Ka(X)且S∈Ka(X).The definition of Ka operator is given. The relations between N(T^a) and R (T^b) is discussed. Some conditions which makeT(Y) become a closed subspace for a closed subspace Y is obtained. And the conditions are considered such that the operator T [R^∞(T) from R^∞ (T) to R^∞ (T) is surjective.it is proved that if T∈Ф+ (X) or N(T)lohtain in R^∞ (T) ,then T|R^∞(T) is surjective. So there is a corollary that if T is a Ka operator, then T|R^∞(T) is surjective. Based on the definition of Ka operator, the definition of the second Kato spectra σ'k (T) is given. It is proved that σ'k (T) is a nonempty compact subset of C,and σ'k (T)=σ'k (T^*). And the relations between σ^k (T) and some essential spectra is discussed,it is showed that σ(T),σ'k(T)/σB(T)≠0、σe(T)/σ'k(T)≠Ф,σ'K(T)包含于σa(T)∩σsu(T). It is also showed that if TS=ST and TS is a Ka operator,then T and S are all Ka operators.

关 键 词:BANACH空间 Ka算子 第二Kato谱 

分 类 号:O177.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象