检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北大学信息科学与工程学院,辽宁沈阳110004
出 处:《东北大学学报(自然科学版)》2008年第7期932-935,共4页Journal of Northeastern University(Natural Science)
基 金:黑龙江省自然科学基金资助项目(F0318)
摘 要:对图像分割中的CASVFMM算法进行了改进.通过对原有势函数的修正,增加了势函数对像素特征的依赖性,使算法既保持了分割的连续性,又增强了分割收敛的稳定性.由此新算法在对不同类别图像的分割处理中,分割结果与原图像区域对应的一致性有明显增强.另外,对势函数的结构作了一定的修正,加快了算法的收敛速度,增强了算法收敛时分割结果的合理性.通过在MIT标准图像集上的景物分析仿真实验,对比说明了新算法较之CASVFMM算法改进的有效性,为其他图像分析应用提供了一种有效的分割方法.Introduces a newly improved method into scenery image segmentation, based on the CASVFMM (class-adaptive spatially variant finite mixture model) algorithm. By modifying the original potential function to strengthen the dependence of potential function on image pixel features, the segmentation continuity can be kept on with enhanced convergence stability. Thus, the segmented results obviously further conform to the corresponding image regions when the new algorithm is applied to the segmentation of images of different classes. Moreover, the structure expression of potential function is modified to a certain degree so as to accelerate the convergence rate of the algorithm and enhance the reasonableness of the segmented results when the algorithm comes into convergence. The simulation tests for scenery image analysis of the MTT standard image sets reveal comparatively that the newly improved algorithm is more efficient than the original CASVFMM and it is also available to other image analyses.
关 键 词:MARKOV随机场 图像分割 EM算法 景物分析 聚类分割
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.64