检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]合肥工业大学计算机与信息学院,合肥230009
出 处:《计算机工程与应用》2008年第21期188-191,共4页Computer Engineering and Applications
基 金:国家自然科学基金( the National Natural Science Foundation of China under Grant No.60573174);安徽省自然科学基金( the Natural Science Foundation of Anhui Province of China under Grant No.050420207)
摘 要:数据流上的漂移概念发现已成为数据挖掘领域的研究热点之一。针对存在概念漂移的数据流分类问题,提出一种基于实例加权方法的数据流分类算法(EWAMDS),根据基分类器在训练实例上的分类结果调整该实例的权值,以增强漂移实例在新分类器中的影响,同时引入动态的权值修改因子以提高算法的适应性。实验结果表明,动态地调整实例的权值时算法的适应性更强;与weighted-bagging相比,EWAMDS的时间开销显著降低、分类正确率显著提高。The tracking of drifting concept from data streams has recently become one of hot spots in data mining.In this paper, a Example-Weighted algorithm for mining data streams (EWAMDS) is proposed for data streams classification in the presence of concept drift,in which weight of train example is adjusted according to base classifier s prediction on it,so as to enhance influence of drifting examples in new classifier,and a dynamic weight modifying factor is introduced to improve the adaptability of this algorithm.The results of experiments indicate that modifying weight of example dynamically makes this algorithm more adaptively;and in comparison with weighted-bagging,EWAMDS has a lower time consumption and higher accuracy.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249