检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:卢建伟[1]
出 处:《浙江大学学报(理学版)》2008年第4期365-368,共4页Journal of Zhejiang University(Science Edition)
摘 要:引入了准体的概念,并用它刻画了半交换π-正则环的结构.证明了若R是半交换环,则下面条件是等价的:(1)R是π-正则环.(2)R的每个素理想均为极大理想.(3)R/PE(P)为准体,其中P为R的任意素理想,E(P)为P的所有幂等元素组成的集合.(4)P1,P2为R的两个素理想,若E(P1)=E(P2),则有P1=P2.并进一步证明了半交换π-正则环R同构于诸准体{R/PE(P)}的一个亚直接和,P∈M,M为R的所有素理想组成的集合.The concept of pre-division ring is defined and it is applied to characterizing the semi-commutative π-regular rings. It is proved that if R is a semi-commutative ring, the following conditions are equivalent: (1) R is a π-regular ring. (2) Every prime ideal of R is maximal ideal. (3) R/PE(P) is a pre-division ring. P is any prime ideal in R, E(P)is a set of all idempotent elements of P. (4) If E(P1 )= E(P2 ), thenP1 = P2 ,P1 ,P2 are two prime ideals of R. Moreover, it is proved that the semi-commutative π-regular ring R is isomorphic to a sub ring of direct sum of all pre-division rings RIPE(P), P∈M,M is a set of all prime ideals of R.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.99.99