检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山东德州科技职业学院青岛校区,青岛266232 [2]山东大学信息科学与工程学院,济南250100
出 处:《电子与信息学报》2008年第7期1708-1712,共5页Journal of Electronics & Information Technology
基 金:国家自然科学基金(60675024)资助课题
摘 要:线性判别分析(LDA)是一种较为普遍的线性特征提取方法,它的主要缺点是在应用时经常遇到小样本问题,同时其准则函数并不与识别率直接相关。该文提出一种基于DCT的改进零空间LDA方法,能够解决以上两个问题。首先,通过使用DCT代替"像素聚类"并重新定义类间散布矩阵,得到一种新的零空间法。然后将这种方法与F-LDA结合起来得到一种新的对人脸识别更有效的特征提取方法,实验证明这种方法能得到较好的识别率。Linear Discriminant Analysis(LDA) is one of the most popular linear projection techniques for feature extraction. The major drawback of applying LDA is that it often encounters the Small Sample Size(SSS) problem. Besides, their optimization criteria is not directly related to the classification accuracy. In this paper, an improved null space LDA method based on DCT is proposed to solve both problems. First, by employing the DCT instead of the "pixel grouping" and redefining the within class scatter matrix, a new null space method is given. Then, combining this method with F-LDA an efficient new feature extraction algrithm is proposed for face recognition. Experimental results show that this method achieves better performance than existing ones.
关 键 词:人脸识别 线性判别分析 DCT 零空间 F-LDA
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30