LS-SVM的非线性特征提取新方法及与PCA的关系研究  被引量:1

Nonlinear Feature Extraction Method Using LS-SVM and its Relation with PCA

在线阅读下载全文

作  者:吴德会[1,2] 

机构地区:[1]九江学院,数字控制技术与应用江西省重点实验室,江西九江332005 [2]清华大学电机系电力系统国家重点实验室,北京100084

出  处:《小型微型计算机系统》2008年第7期1296-1300,共5页Journal of Chinese Computer Systems

基  金:国家自然科学基金项目(70272032,70672096)资助

摘  要:提出一种基于最小二乘支持向量机(LS-SVM)的非线性特征提取新方法.先将线性特征提取公式表达成与LS-SVM回归算法中相同的形式;再根据SVM思想,将数据集由输入空间映射到高维特征空间,进而通过核技巧实现非线性特征提取.在理论上证明了所提特征提取方法的结果与PCA方法具有一致性,是传统PCA的一种对偶形式,更适合高维特征数据集的提取.最后,通过近红外光谱数据集特征提取实例验证了在上述条件下该方法的优越性.A new nonlinear feature extraction method based on least squares support vector machine (LS-SVM) was presented. Firstly, the formulation of linear feature extraction was made in the same fashion as that in the LS-SVM linear regression algorithm. Then the data was mapped from the original input space to a high dimensional feature by following the usual SVM methodology and nonlinear feature extraction could be obtained from linear version of the formulation through applying the kernel trick. It was proved that the presented method, for which the solution coincided with PCA, was a dual problem of the later. So it is suitable for feature extraction in higher-dimensional dataset. Experiment results of near-infrared(NIR) spectrometry feature extraction demonstrate its superior performance in the conditions.

关 键 词:最小二乘支持向量机 主成分分析 回归算法 特征提取 近红外光谱 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象