检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]兰州交通大学自动化与电气工程学院,甘肃兰州730070
出 处:《系统仿真学报》2008年第15期4025-4030,共6页Journal of System Simulation
基 金:甘肃省自然科学基金项目(3ZS042-B25-026);兰州交通大学"青篮"人才工程基金资助计划
摘 要:为了选择神经网络的最好结构以及增强模型的推广能力,提出一种自适应支持向量回归神经网络(SVR-NN)。SVR-NN用支持向量回归(SVR)方法获得网络的初始结构和权值,自适应地生成网络隐层结点,然后用基于退火过程的鲁棒学习算法更新网络结点参数和权值。SVR-NN有很好的收敛性和鲁棒性,能抑制由于数据异常和参数选择不当所导致的"过拟合"现象。将SVR-NN应用到时间序列预测上。结果表明,SVR-NN预测模型能精确地预测混沌时间序列,具有很好的理论和应用价值。To select the 'best' structure of the neural networks and enhance the generalization ability of models, a support vector regression neural networks (SVR-NN) was proposed. Firstly, support vector regression approach was applied to determine initial structure and initial weights of SVR-NN so that the number of hidden layer nodes can be constructed adaptively based on support vectors. Furthermore, an annealing robust learning algorithm was further presented to fine tune the hidden node parameters and weights of SVR-NN. The adaptive SVR-NN has fast convergence speed and robust capability, and it can also suppress the 'overfitting' phenomena when the train data includes outliers. The adaptive SVR-NN was then applied to time series prediction. Experimental results show that the adaptive SVR-NN can accurately predict chaotic time series, and it is valuable in both theory and application aspects.
关 键 词:支持向量回归 神经网络 鲁棒学习算法 时间序列 预测
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.51