检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:倪庆剑[1] 邢汉承[1] 张志政[1] 王蓁蓁[1]
机构地区:[1]东南大学计算机科学与工程学院,江苏南京210096
出 处:《计算机应用与软件》2008年第8期12-16,共5页Computer Applications and Software
基 金:国家自然科学基金(90412014)资助
摘 要:蚁群算法作为一种仿生进化算法,是受到真实蚁群觅食机制的启发而提出的。首先介绍了蚁群算法的基本原理和工作机制,然后分别就蚁群算法的理论和应用的研究现状进行了综述,主要包括蚁群算法的参数设置,蚁群算法的改进,蚁群算法的收敛性以及蚁群算法在组合优化问题和连续优化问题中的应用,并进一步给出了它们的研究重点和发展方向,最后是关于蚁群算法的研究展望和面临的挑战,提出了蚁群算法研究中值得探讨的一些课题。The ant colony algorithm is a metaheuristic algorithm for optimization problems, which is inspired by foraging mechanisms of real ant colonies. The basic principle and working mechanism of ant colony algorithm are firstly introduced, and current researches in theories and applications of ant colony algorithm are also overviewed respectively, which are related to the configuration of parameters, improvements convergence analysis and applications in dynamic combinatorial optimization problems and continuous optimization problems. At the same time, further focusing areas and exploitation directions are presented. Finally, some remarks on the future trends and challenges faced as well as existing problems related to ant colony algorithm are discussed and concluded.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229