基于最小二乘支持向量机算法的南宋官窑出土瓷片分类  被引量:2

CLASSIFICATION OF ANCIENT CERAMIC PIECES FROM UNEARTHED OFFICIAL WARE AT HANGZHOU BASED ON LEAST SQUARE SUPPORT VECTOR MACHINE ALGORITHM

在线阅读下载全文

作  者:付略[1] 周少华[1] 彭勃[1] 梁宝鎏[2] 

机构地区:[1]浙江大学材料科学与化学工程学院,杭州310027 [2]香港城市大学物理及材料科学系,香港九龙

出  处:《硅酸盐学报》2008年第8期1183-1186,共4页Journal of The Chinese Ceramic Society

基  金:香港城市大学研究基金(7001104)资助项目

摘  要:将最小二乘支持向量机(leastsquare support vector machine,LS-SVM)算法用于杭州南宋官窑2窑址出土瓷片的分类研究中,根据瓷片胎和釉的主要、次要和痕量元素组成对它们进行了分类,用留一法检验其分类效果,并与支持向量机(support vector machine,SVM)算法和自组织特征映射(self-organizing map,SOM)算法进行了比较。结果表明:SVM算法和LS-SVM算法比SOM算法更适合于处理"小样本"问题;一般情况下,SVM的分类效果比LS-SVM的分类效果好,但是LS-SVM具有更快的求解速度。Ancient ceramic pieces for two types of official ware in the Southern Song Dynasty were classified by the least squares support vector machine (LS-SVM) algorithm according to the discrepancies in the major, minor and trace elements in the bodies and glazes. The classification effect was validated by the leave-one-out method and compared with the support vector machine (SVM) and self-organizing map (SOM) methods. The results show that the methods of SVM and LS-SVM are preferable to SOM for classifying small samples. Generally, SVM provides a more accurate classification than does LS-SVM; however, the calculation of LS-SVM is quicker than that of SVM when run in MATLAB.

关 键 词:最小二乘支持向量机 南宋官窑 古陶瓷 支持向量机 自组织特征映射 

分 类 号:TQ174[化学工程—陶瓷工业]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象