检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江大学材料科学与化学工程学院,杭州310027 [2]香港城市大学物理及材料科学系,香港九龙
出 处:《硅酸盐学报》2008年第8期1183-1186,共4页Journal of The Chinese Ceramic Society
基 金:香港城市大学研究基金(7001104)资助项目
摘 要:将最小二乘支持向量机(leastsquare support vector machine,LS-SVM)算法用于杭州南宋官窑2窑址出土瓷片的分类研究中,根据瓷片胎和釉的主要、次要和痕量元素组成对它们进行了分类,用留一法检验其分类效果,并与支持向量机(support vector machine,SVM)算法和自组织特征映射(self-organizing map,SOM)算法进行了比较。结果表明:SVM算法和LS-SVM算法比SOM算法更适合于处理"小样本"问题;一般情况下,SVM的分类效果比LS-SVM的分类效果好,但是LS-SVM具有更快的求解速度。Ancient ceramic pieces for two types of official ware in the Southern Song Dynasty were classified by the least squares support vector machine (LS-SVM) algorithm according to the discrepancies in the major, minor and trace elements in the bodies and glazes. The classification effect was validated by the leave-one-out method and compared with the support vector machine (SVM) and self-organizing map (SOM) methods. The results show that the methods of SVM and LS-SVM are preferable to SOM for classifying small samples. Generally, SVM provides a more accurate classification than does LS-SVM; however, the calculation of LS-SVM is quicker than that of SVM when run in MATLAB.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222