检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]长沙理工大学计算机与通信工程学院,湖南长沙410076
出 处:《计算机工程与设计》2008年第15期3960-3962,共3页Computer Engineering and Design
基 金:湖南省自然科学基金项目(05JJ30123);湖南省教育厅科学研究基金项目(05C246)
摘 要:经验模态分解是一种数据驱动的信号分解方法,具有局部性和瞬时性等特性,非常适合非稳态非线性信号分析。提出了一种新的快速二维经验模态分解方法,在新方法中,采用了新的边界抑制算法,改进了经验模态分解算法的筛选条件。将该方法应用于纹理分割,取得了满意的实验效果。As a data-driven method for signal decomposition, empirical mode decomposition (EMD), with the characteristics of partiality and instantaneity, is especially suitable for the analysis of the unstable and non-linear signals. A new and effective method for the bidimensional empirical mode decomposition is proposed. A new way for boundary restraint is introduced and the filter conditions in empirical mode decomposition is improved. Meanwhile, this new method has been applied to the texture segmentation, which has turned out to be effective and efficient according to the experimental results.
关 键 词:经验模态分解 二维经验模态分解 纹理分割 C-均值 二维固态模函教
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222