检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姚立健[1] 丁为民[1] 赵三琴[1] 杨玲玲[1]
出 处:《南京农业大学学报》2008年第3期140-144,共5页Journal of Nanjing Agricultural University
摘 要:以将茄子图像从复杂的背景中分割出来为目的,在分析茄子图像色差和色相的基础上,选取R-B、G-B和H作为自组织特征映射(SOFM)网络的输入特征向量,利用该网络自组织学习的特征进行聚类。采用信噪比、面积比、分割时间和傅里叶边界描述子等指标来评价分割精度。试验证明,基于SOFM神经网络图像分割评价优于单一阈值分割,适合复杂背景的彩色图像分割。The purpose of this article was to segment eggplant from its complex background. R-B , G-B and H were selected as the input-vectors of the self-organizing feature maps (SOFM) network based on analyzing the color-difference and hue characteristics of eggplant image. The input-vectors were classified according to the self-organizing characteristics of this network. In order to make the segmentation results objective and reasonable, signal-noise ratio, area ratio, segmentation times and Fourier-Descriptor were a- dopted to evaluate the segmentation precision. The experiment demonstrates that SOFM network was better than the single-threshold segmentation and more suitable for the color image segmentation with complex background.
关 键 词:茄子 图像分割 自组织特征映射(SOFM)网络 傅里叶描述子
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62