检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学管理学院,黑龙江哈尔滨150001
出 处:《运筹与管理》2008年第4期96-99,105,共5页Operations Research and Management Science
基 金:国家自然科学基金资助项目(70773029);国家教育部博士点基金资助项目(20050213037);哈尔滨工业大学技术政策管理国家哲学社会科学创新基地资助;黑龙江省青年科学基金资助项目(QC04C25)
摘 要:随着我国经济的快速发展,个人信贷业务扩大,给银行带来收益的同时必然存在风险,针对传统个人信用评估方法的不足,鉴于支持向量机具有全局收敛性和良好的推广能力,本文将这种方法应用到信用评估中,利用支持向量机的方法对个人信用进行实证评估,并与K最近邻模型方法进行比较,得出了该方法的可行性和优越性,为银行建立一套完善的评估体系提供依据。With the development of consumer credit in domestic commercial banks, personal credit is attached to more and more value in our country, which brings the bank both benefits and risks. In the light of dissatisfactions with existing personal credit scoring methods,the support-vector-machine (SVM) , which has many good properties including global convergence and good ability of extension, is put forward and applied to evaluate personal loan application. In this paper, the support vector machine (SVM) is applied to the study of personal credit risk assessment. In contrast with KNN, empirical results show that SVM is effective and more advantageous than other methods,which can help the bank establish a better assessment system.
分 类 号:N945.16[自然科学总论—系统科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117