检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华中科技大学土木工程与力学学院,湖北武汉430074
出 处:《华中科技大学学报(自然科学版)》2008年第8期129-132,共4页Journal of Huazhong University of Science and Technology(Natural Science Edition)
基 金:湖北省自然科学基金资助项目(2005ABA303)
摘 要:针对现有一次二阶矩法进行可靠性指标求解不能保证收敛的情况,提出一个等步长迭代模式进行修正,克服了传统方法的不足,从而增大了二阶矩法求解可靠性指标的应用范围.给出了该方法的通用迭代过程,利用可靠度指标在标准正态空间中的几何意义,分别对极限状态面为凸、凹、平坦的情况,进行了该方法收敛性的证明,并提出了确定迭代步长的建议算法.通过实例,分析验证了该迭代方法的可行性.In order to overcome the disadvantage that the convergence of first order-second moment (FOSM) method is not guaranteed, an equal step iteration method (ESIM) was proposed. The range of problems that can be solved by FOSM was expanded. A general iterative process was presented for ESIM. By utilizing the geometric interpretation of the limit state surface in the original space of random variables, the convergence of the iteration process was proved by classifying the limit state surface into three categories. A method for determining the length of each iteration step was also proposed. The correctness of ESIM was demonstrated by an example.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.183.102