检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《系统工程与电子技术》2008年第8期1485-1488,共4页Systems Engineering and Electronics
摘 要:提出递阶遗传训练方法用于训练连续参数小波神经网络的参数及其结构。现有的连续参数小波网络训练方法大多只能训练网络的参数,包括平移参数、伸缩参数和权值,而网络的结构得预先用某种方法确定。应用递阶遗传算法能够把网络的结构和参数同时通过训练确定。利用混沌时间序列数据进行仿真,结果证明该模型具有较高的预测精度,提出的方法是可行的。A hierarchical genetic algorithm is proposed to train the parameters and structure of wavelet neu- ral networks with continuous parameters. Existing training methods for wavelet neural networks with continu- ous parameters are usually confined to parameters, including connection weights, expansion parameters and movement parameters, while their structures have to be predetermined through some method. In contrast, the configuration and related parameters of wavelet neural networks with continuous parameters can be determined simultaneously by using the hierarchical genetic algorithm. A case-study, based on the chaotic time series data, illustrates the effectiveness of the proposed algorithm.
关 键 词:连续参数小波 神经网络 递阶遗传算法 混沌时间序列预测
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28