检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘媛媛[1] 刘文波[1] 甄子洋[1] 张弓[2]
机构地区:[1]南京航空航天大学自动化学院,江苏南京210016 [2]南京航空航天大学信息与计算科学学院,江苏南京210016
出 处:《光电子.激光》2008年第9期1250-1253,共4页Journal of Optoelectronics·Laser
基 金:航空科学基金资助项目(04D52032);江苏省自然科学基金资助项目(K2001047)
摘 要:提出了一种结合灰色关联度和模糊熵的分割算法。传统模糊熵分割算法的隶属度函数只利用了图像灰度值的统计信息,因此算法容易受噪声或光照不均的影响。在隶属度函数的计算中,引入灰色关联度来表示像素的空间信息,能够更加准确地反映像素属于目标或背景的影响。由理想目标或背景点组成参考序列,待处理像素及其邻域组成比较序列,计算比较序列与参考序列之间的灰色关联度,并修正隶属度函数。对实际图像的测试实验表明,结合灰色关联分析的最大模糊熵分割算法比传统模糊熵分割算法具有更强的噪声抑制能力和更准确的分割结果。A new image segmentation method based on grey relational analysis and fuzzy entropy is presented. The traditional fuzzy entropy methods are sensitive to the noise, because they only consider the statistical information of the gray values. In the proposed method grey relatinal degree is introduced to demonstrate whether the pixels belongs to object or background more accurately. The current pixel and its neighbors are selected as a comparative sequence, and the grey relational degree between the comparative sequence and the reference sequence is computed,based on which the membership function of the fuzzy entropy function is redefined so that the membership of the current pixel is determined by its own gray value and the gray values of its neighbor pixels. The segmentation experimental results of several real images exhibit the good performance on reducing the noise by the proposed method.
分 类 号:TN911.73[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.59