检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学空间控制与惯性技术研究中心,哈尔滨150001 [2]赫尔辛基工业大学智能电力电子实验室
出 处:《控制与决策》2008年第9期1073-1076,共4页Control and Decision
基 金:国防预研项目(9140A17030207HT0150);芬兰科学院研究项目(Grant214144)
摘 要:针对粒子群算法和克隆选择原理的特点,提出了基于克隆选择和粒子群思想的动态多群体优化算法.该算法将整个群体分为若干子群体,在子群体内部应用基本的粒子群算法,以子群体作为抗体设计了克隆、变异、选择和受体编辑算子.变异算子使子群体动态变化实现子群体间相互交换信息,具有良好的全局搜索能力.实验结果表明,该算法具有寻优能力强、搜索精度高的优点,可用于工程问题中具有各种特性的复杂函数优化.Based on the promising fusion of the clonal selection and particle swarm principles, a dynamic multi-swarm optimization algorithm is proposed. In the approach, the whole swarm is divided into dynamic subpopulations, which are considered as the evolving antibodies. These subpopulations are further optimized by using the particle swarm method to increase the necessary antibody diversity. Moreover, they can exchange useful optimization information among themselves during the iteration procedure. The cloning, hypermutation, selection and receptor editing operators are also employed in the proposed hybrid scheme. Simulations demonstrate that the optimization algorithm can overcome the premature and slow convergence drawbacks of the standard particle swarm and clonal selection methods, and it is very effective in dealing with the challenging nonlinear function optimization problems.
关 键 词:克隆选择 粒子群 优化算法 多维函数优化 多群体
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15