检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学机电工程学院,哈尔滨150001
出 处:《纳米技术与精密工程》2008年第5期367-371,共5页Nanotechnology and Precision Engineering
摘 要:针对使用原子力显微镜测量纳米尺度半导体刻线边缘粗糙度的参数表征问题进行了研究.在对线边缘粗糙度的定义与现有测量方法进行分析的基础上,采用图像处理技术分析硅刻线的原子力显微镜测量图像的线边缘粗糙度特征,提出了线边缘粗糙度的幅值与空间频率的表征方法.其中幅值参数能够在一定意义上反映刻线边缘形貌的均匀性,而采用小波多分辨分析与功率谱密度函数(PSD)频谱分析相结合的空间频率表征方法,则有效地分析了侧墙轮廓边缘复杂的空间信息.实际测量结果表明,样本线边缘粗糙度的主要能量集中在低频区域,其主导空间频率为~0.04nm^-1,在低频部分约500nm特征波长上有最大的线边缘粗糙度分布.To obtain a metrology method for line edge roughness (LER) detection and characterization using atomic force microscope(AFM), a LER quantificational method using image processing theory was presented, which is used to analyze AFM images of silicon lines and extract LER characteristics. Two types of analysis methods of LER were established: amplitude measurement and spatial frequency analysis. The amplitude parameters can reflect the uniformity of line edge topography, while the spatial frequency characterization method combining wavelet-based multiresolution analysis with power spec- tral density (PSD) analysis can give the spatial analysis of sidewall profile effectively. The measurement results of samples show that the main energy of LER is at the low frequency region. The dominant spatial frequency of LER is ~0.04 nm^-1, and the features with a characteristic wavelength of 500 nm have the largest contribution to the LER.
关 键 词:纳米测量 线边缘粗糙度 原子力显微镜 小波多分辨分析
分 类 号:TN405[电子电信—微电子学与固体电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90