检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机应用与软件》2008年第9期252-254,共3页Computer Applications and Software
摘 要:确定模糊产生式规则的各项参数对模糊Petri网(FPN)的建立具有非常重要的意义,是目前研究热点之一。提出了一种充分结合量子粒子群优化算法QPSO(Quantum-behaved partide swarm optimization algorithm)和BP网络学习算法各自优点的混合智能算法HQBA,并将其引入到模糊Petri网的参数寻优过程。仿真实例表明,这种混合算法计算简单,收敛速度快,能够明显减少迭代次数,具有更好的全局收敛性能。由此训练出的参数正确率较高,所得的FPN具有很强的泛化能力和自适应性。The determination of the parameters of fuzzy production rules is significant for the construction a fuzzy Petri net, and it is one of the research hotspots. A hybrid algorithm HQBA is proposed, which takes full advantages of Quantum-behaved particle swarm optimization (QPSO) algorithm and BP neural networks learning algorithm. The hybrid algorithm is introduced into the procedure of exploring the parameters of FPN. Simulated experiment shows that this hybrid algorithm has the characteristics of easier computation, faster convergence speed, less interation, and better global convergence ability compared with other traditional learning algorithms. The parameters gained from this algorithm are highly accurate, and the resultant FPN model owns strong generalization eapability and self-adaptability.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145