检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:欧阳耿[1]
出 处:《数学理论与应用》2008年第3期44-49,共6页Mathematical Theory and Applications
摘 要:分析了罗素悖论与康托的实数集合不可数证明及康托定理■<■证明之间的本质性联系,发现康托的这两个非构造性证明与罗素悖论有完全相同的思路,但是康托犯了两个逻辑性错误而使他误用了这个悖论思路。得到明确的结论:康托在集合论中如上两个证明里的核心部分实际上是罗素悖论的翻版,这两个证明中的思路与做法是错误的,这样的证明结果没有科学性。Through a new analysis on the essential relationship betwen Russell's Paradox and Cantor's proof on the uncountability of real number set and the proof on the Cantor' s Theorem of S〈P(S), two mysterious errors were found: The very same idea was applied in both Russell and Cantor's work,but Cantor made wrong use of it with two logical mlstakes.A conclusion is drown: The core of Cantor' s ahove two important proofs in set theory are acturally another version of Russell's paradox,the ideas and operations in the two Cantor' s proof are wrong and the results are not scientific at all.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38