套子代数上的零点可导映射  

Derivable Mappings at the Point Zero on Nest Subalgebras

在线阅读下载全文

作  者:李红霞[1] 

机构地区:[1]西南科技大学理学院,四川绵阳621010

出  处:《四川师范大学学报(自然科学版)》2008年第5期538-540,共3页Journal of Sichuan Normal University(Natural Science)

基  金:国家自然科学基金(10571114)资助项目

摘  要:设β是因子von Neumann代数M中的任意一个套,algMβ是相应的套子代数,φ:algMβ→M是一个线性映射.主要证明了:如果φ在零点可导,那么存在导子δ:algMβ→M和λ∈C,使得对任意的A∈algMβ有φ(A)=δ(A)+λA.Letβ be a nest in an arbitrary factor von Neumann algebra M, the nest subalgebra of M associated be the nest β is the algMβ and φ a linear mapping from algMβ to M. In this paper, it is proved that if φ is derivable at the point zero, then there exist a derivatian 8: algMβ→ M and a scalar λ ∈ C, such that φ(A) =δ(A) +λA for all A ∈ algMβ.

关 键 词:零点可导 von NEUMANN代数 套子代数 

分 类 号:O177.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象