检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘勇健[1]
机构地区:[1]广东工业大学,广州510006
出 处:《岩土力学》2008年第10期2764-2768,共5页Rock and Soil Mechanics
基 金:广东省自然科学基金项目(No.6021462);广东省重点学科基金(No.2005D16)资助
摘 要:建立在统计学习理论基础之上的支持向量机(SVM),是一种基于结构风险最小的小样本机器学习方法。经典的支持向量机主要针对二分类问题,而工程实践中遇到的往往是多分类问题。根据影响砂土液化的主要因素,采用聚类分析中的类距离思想,建立了基于聚类-二叉树的多类支持向量机的砂土液化判别模型。该模型可以通过有限样本的学习,建立砂土液化与各影响因素之间的非线性关系。研究结果表明,基于聚类-二叉树支持向量机的层次结构合理,分类精度高,泛化性好,可对砂土液化等级进行较准确判别。Support vector machine (SVM) is a novel and powerful learning method which is derived based on statistical learning theory (SLT) and the structural risk minimization principle. Traditional SVM only deals with the binary classification problems, however, there are large numbers of multi-classification problems in practical engineering. With a view to the main factors with important influence on sand liquefaction, multi-class support vector machines model based on clustering-binary tree is established. The nonlinear relationship between sand liquefaction and influencing factors is obtained from the finite empirical data by SVM. The results indicate that the structure of model base on SVM is reasonable; this algorithm is feasible; and it can predict the sand liquefaction more accurately.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15