机构地区:[1]Department of Viral Diseases and Immunology,National Public Health Institute, Mannerheimintie 166, Helsinki00300, Finland [2]Pharmacology, Instituteof Biomedicine, University of Helsinki, PO Box 63, Helsinki00014, Finland [3]Research Center, Valio Ltd, Meijeritie 4, Helsinki 00370,Finland
出 处:《World Journal of Gastroenterology》2008年第36期5570-5583,共14页世界胃肠病学杂志(英文版)
基 金:The Medical Research Council of the Academy of Finland and the Sigrid Juselius Foundation
摘 要:AIM: To analyze the ability of nine different potentially probiotic bacteria to induce maturation and cytokine production in human monocyte-derived dendritic cells (moDCs). METHODS: Cytokine production and maturation of moDCs in response to bacterial stimulation was analyzed with enzyme-linked immunosorbent assay (ELISA) and flow cytometric analysis (FACS), respectively. The kinetics of mRNA expression of cytokine genes was determined by Northern blotting. The involvement of different signaling pathways in cytokine gene expression was studied using specific pharmacological signaling inhibitors. RESULTS: All studied bacteria induced the maturation of moDCs in a dose-dependent manner. More detailed analysis with S. thermophilus THS, B. breve Bb99, and L. lactis subsp, cremoris ARH74 indicated that these bacteria induced the expression of moDC maturation markers HLA class Ⅱ and CD86 as efficiently as pathogenic bacteria. However, these bacteria differed in their ability to induce moDC cytokine gene expression. S. thermophilus induced the expression of pro-inflammatory (TNF-α, IL-12, IL-6, and CCL20) and Thl type (IL-12 and IFN-γ) cytokines, while B. breve and L. lactis were also potent inducers of antiinflammatory IL-10. Mitogen-activated protein kinase (MAPK) p38, phosphatidylinositol 3 (PI3) kinase, and nuclear factor-kappa B (NF-κB) signaling pathways were shown to be involved in bacteria-induced cytokine production. CONCLUSION: Our results indicate that potentially probiotic bacteria are able to induce moDC maturation, but their ability to induce cytokine gene expression varies significantly from one bacterial strain to another,AIM: To analyze the ability of nine different potentially probiotic bacteria to induce maturation and cytokine production in human monocyte-derived dendritic cells (moDCs). METHODS: Cytokine production and maturation of moDCs in response to bacterial stimulation was analyzed with enzyme-linked immunosorbent assay (ELISA) and flow cytometric analysis (FACS), respectively. The kinetics of mRNA expression of cytokine genes was determined by Northern blotting. The involvement of different signaling pathways in cytokine gene expression was studied using specific pharmacological signaling inhibitors. RESULTS: All studied bacteria induced the maturation of moDCs in a dose-dependent manner. More detailed analysis with S. thermophilus THS, B. breve Bb99, and L. lactis subsp. cremoris ARH74 indicated that these bacteria induced the expression of moDC maturationmarkers HLA class Ⅱ and CD86 as efficiently as pathogenic bacteria. However, these bacteria differed in their ability to induce moDC cytokine gene expression. S. thermophilus induced the expression of pro-inflammatory (TNF-α, IL-12, IL-6, and CCL20) and Th1 type (IL-12 and IFN-γ) cytokines, while B. breve and L. lactis were also potent inducers of anti- inflammatory IL-10. Mitogen-activated protein kinase (MAPK) p38, phosphatidylinositol 3 (PI3) kinase, and nuclear factor-kappa B (NF-κB) signaling pathways were shown to be involved in bacteria-induced cytokine production. CONCLUSION: Our results indicate that potentially probiotic bacteria are able to induce moDC maturation, but their ability to induce cytokine gene expression varies significantly from one bacterial strain to another.
关 键 词:Probiotic bacteria Immune response Cytokine CHEMOKINE Dendritic cell HUMAN Gene expression Signal transduction
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...