检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华中科技大学电子与信息工程系,湖北武汉430074 [2]江西科技师范学院江西省光电子与通信重点实验室,江西南昌330013
出 处:《小型微型计算机系统》2008年第10期1855-1859,共5页Journal of Chinese Computer Systems
基 金:国家自然科学基金(60462003,60772091)资助
摘 要:提出一类新的非参数贝叶斯估计器,估计器利用正态反高斯(NIG)分布作为先验模型.与广义高斯分布(GGD)、alpha稳定分布和贝塞尔K分布(BKF)相比,正态反高斯分布能更加精确地对图像小波系数分布进行拟合.在二次型贝叶斯规则下,推导出基于正态反高斯分布的后验条件均值估计.最后,对图像进行去噪实验.实验结果表明,与最新提出的算法相比,该方法获得更高的峰值信噪比增益和好的视觉效果.A novel nonparametric Bayesian estimator for image denoising in wavelet domain is presented. In this approach, norreal inverse Gaussian (NIG) distribution is used as a prior model to capture the sparseness of the wavelet expansion. Compared with other distributions, such as the generalized Gaussian distribution (GGD),α-stable models, and Bessel K forms (BKF), it fits very well to the distributions of wavelet coefficients of natural images. Based on Lz based Bayes rules, a posterior conditional means estimator is designed. Finally, the estimator is used to image denoising. Experimental results show that compared with several recently published algorithms, the proposed method achieves state-of-art performance in terms of peak signal-to-noise ratio and visual effect.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117