含k-次增生算子的方程解的迭代逼近与稳定性  被引量:3

Iterative approximation & stability for solutions of the equations involving k-subaccretive operators

在线阅读下载全文

作  者:胡洪萍[1] 

机构地区:[1]西安文理学院数学系,陕西西安710065

出  处:《纺织高校基础科学学报》2008年第3期320-323,共4页Basic Sciences Journal of Textile Universities

基  金:西安文理学院专项科研基金资助项目(KY200525)

摘  要:在一般Banach空间中,使用迭代的方法,研究含k-次增生算子非线性方程解的逼近问题.建立了具有误差的Ishikawa迭代序列强收敛到解的一般性定理,并讨论了迭代过程的稳定性.结果不仅本质地改进和拓广了有关文献的相关结果,而且用k-次增生算子代替增生算子,使结果更具一般性.The iterative method was used for studying the approximation problem of solutions for k-accretive operator equations in general Banach spaces. A general theorem was established about the Ishikawa iterative sequence with errors which strongly convergence to solutions and the stability of the iterative process was discussed. Relevant results of reference literature were improved and extended, and the more general results were obtained by using the k-subaccretive operator to replace the subaccretive operator.

关 键 词:K-次增生算子 带混合误差的Ishikawa迭代序列 稳定性 非线性方程 BANACH空间 

分 类 号:O177.91[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象