检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李良敏[1,2] 温广瑞[3] 王生昌[2] 刘红梅[2]
机构地区:[1]长安大学汽车运输安全保障技术交通行业重点实验室,西安710064 [2]长安大学汽车学院,西安710064 [3]西安交通大学智能仪器与监测诊断研究所,西安710049
出 处:《系统仿真学报》2008年第21期5911-5916,共6页Journal of System Simulation
基 金:国家863发展计划(2006-AA04Z429)
摘 要:针对现有独立分量分析算法的分离效果依赖于非线性对比函数的选择,并且无法有效地分离超高斯和亚高斯混合信号这一现象,提出了一种基于遗传算法的独立分量分析算法,该算法采用直方图法根据信号的样本序列来估计信号的概率分布,解决了信号间互信息的计算问题,然后通过遗传算法最小化信号间的互信息,实现了对线性混叠信号的分离;同时,针对标准遗传算法存在的一些缺点如局部搜索能力差、容易出现早熟收敛等,提出了一种改进遗传算法,提高了遗传算法的寻优能力。对模拟信号的分离结果表明,基于改进遗传算法的独立分量分析算法的性能优于FastICA算法,对亚高斯和超高斯信号的混合信号具有优异的分离能力。模拟仿真实验结果同时也证实了改进遗传算法的寻优能力。The performance of existing independent component analysis methods is highly affected by the non-linear contrast functions that are selected according to the distribution of original signals, the separation results are not always ideal, especially for the mixture of super-Gaussian signal and sub-Gaussian signal. To solve this problem, a new independent component analysis method based on improved genetic algorithm was proposed, where the probability of separated signals was estimated by histogram method, so the mutual entropy could be easily evaluated, then genetic algorithm was applied to find the separation matrix to minimize the mutual entropy. At the same time, an improved genetic algorithm was proposed to overcome some shortcomings of standard genetic algorithm, such as poor local searching ability and premature convergence. Simulation results show that the proposed independent component analysis method is superior to FastICA in separating the mixture of super-Gaussian signal and sub-Gaussian signal. Simulation results also prove the optimization ability of improved genetic algorithm.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117