基于区域分割技术的等距天线曲面重构  被引量:1

Reconstruction of Antenna Offset Surface Based on Segmentation Technique

在线阅读下载全文

作  者:仝志民[1,2] 唐文彦[1] 马强[1] 李慧鹏[1] 

机构地区:[1]哈尔滨工业大学电气工程及自动化学院,黑龙江哈尔滨150001 [2]黑龙江八一农垦大学信息技术学院,黑龙江大庆163319

出  处:《南京理工大学学报》2008年第5期585-589,共5页Journal of Nanjing University of Science and Technology

摘  要:针对逆向工程中空间坐标测量时仪器测头半径或靶标厚度的误差补偿问题,提出了对散乱点云数据进行自动区域分割的方法。快速搜索出子区域中测点的最近邻域,利用测点最近邻域构造一个有约束的最小二乘切平面,得到曲面在该测点处的法线矢量。基于Prim算法的优化算法对法线矢量方向进行调整,使各测点处的法线矢量都指向曲面同一侧,进而求取了实际曲面上的点。对于经过误差补偿后的点云数据,从空间任意二次曲面的一般方程出发,基于二次曲面的误差方程和法方程提出一种通用拟合算法,并借助二次型理论得到曲面的特征参数。实验结果证明:应用该区域分割算法能够提高最近邻域的搜索速度,且曲面拟合算法具有很好的鲁棒性和有效性。A new method of automatic segmentation of the scattered point-cloud data is presented in view of the error compensation of the radius of the instrument probe or the thickness of the targets in spatial coordinates measurement in reverse engineering. The nearest neighborhood of a measured point is searched quickly within the child areas and a constrained least square tangent plane of the surface at each point is constructed with the points in the neighborhood and the normal vectors at the point are obtained. The normal vectors of the tangent planes are adjusted to the same direction by using the Prim-based optimal arithmetic. The real points on the surface are obtained. In order to reconstruct the surface, using the compensated point-cloud data, a universal fitting arithmetic from the general equations of the quadric surface is proposed based on the error equations and vector equations of the quadrie surface. The characteristic parameters of the surface are obtained by virtue of quadratic theory. Experimentat results show that the searching speed of the nearest neighborhood is improved by using the segmentation method and the arithmetic of the surface fitting is proved robust and efficient.

关 键 词:逆向工程 散乱数据 区域分割 等距曲面 二次曲面 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象