检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:常哲[1]
出 处:《中国科学基金》1997年第4期273-279,共7页Bulletin of National Natural Science Foundation of China
摘 要:可积系统是理论物理学最活跃的研究领域之一,在几十年的过程中发展了一系列成熟的理论方法,极大地推动了物理学的发展。量子群与量子对称性是可积系统研究的最新发展,在广泛的物理问题中有重要的应用。实际上,量子对称性已经超越可积系统的原来框架,也已成为解决不可积问题的重要手段。我们试图评述量子群的引入背景、量子群理论,特别是量子对称性研究的最新结果。The subject of integrable models, both classical and quantum, is fascinating. Decades of research in this area have led to mathematical developments which are quite beautiful and which unify various aspects of physical problems that appear to be disparate. One of them, quantum group, is now a popular topic in different fields of modern physics due to its structure richer than that of Lie group. The background of introducing the quantum group, quantum group theory and, in particular, quantum symmetry in integrable and non-integrable systems is reviewed.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13