基于眼睛状态识别的驾驶员疲劳实时监测  被引量:14

Real-time Monitoring of Driver Fatigue Based on Eye State Recognition

在线阅读下载全文

作  者:成波[1] 张广渊[1] 冯睿嘉[1] 李家文[1] 张希波[1] 

机构地区:[1]清华大学,汽车安全与节能国家重点实验室,北京100084

出  处:《汽车工程》2008年第11期1001-1005,共5页Automotive Engineering

基  金:国家863计划(2006AA11Z213);中国博士后科学基金(20070420361)资助

摘  要:提出了一种基于眼睛状态识别的驾驶员疲劳状态实时监测的方法。为了实现眼睛状态的检测,首先通过计算累计背景和当前帧的差分图像的质心确定脸部范围,然后通过二值化和轮廓检测确定眼睛的搜索区域。在利用启发式规则进行筛选定位之后,计算眼睛骨架曲线和两眼角连线之间的距离得到眼睛的睁开程度。通过计算相应的疲劳指标如PERCLOS、平均睁眼程度、最长眼睛闭合时间来推测驾驶员的疲劳状态。以驾驶员面部视频的主观评分作为评价依据对检测方法进行评价,结果显示上述3个指标在不同的疲劳等级下均存在显著性差异,通过对不同指标的融合可达到较好的疲劳检测准确率。A scheme of real-time monitoring of driver fatigue based on eye state recognition is presented. First, the difference images obtained from the background and current images are used to identify the center of face region. Then binarization and contour detection are used to identify the region of interest of the eye. After using heuristic rules to screen out the contour, the profile of eye rim can be extracted, based on which the opening level of eye is obtained as one of the three parameters chosen to be the indicators of driver fatigue. The three indicators are percent eyelid closure ( PERCLOS), average opening level, and maximum closure duration of eye. They are e- valuated with subjective rating by groups of laboratory technicians on the video of drivers'face images. The results show that all the three above-mentioned indicators can well represent driver fatigue, and the fusion of three indicators can get even higher accuracy rate in driver fatigue detection.

关 键 词:驾驶员 疲劳检测 眼睛状态 交通事故 交通安全 计算机 差分图像 

分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象