检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华中科技大学控制科学与工程系,湖北武汉430074
出 处:《应用科学学报》2008年第6期638-644,共7页Journal of Applied Sciences
基 金:国家自然科学基金(No.60674105);教育部博士点基金(No.20050487013)资助项目
摘 要:针对允许神经元发放多个脉冲的Spiking神经网络(SNN)的学习,提出采用更接近生物神经元的SRM模型,更全面地考虑了神经元在发放脉冲后的状态变化,并采用BP学习算法调整神经元的不应期.通过对XOR问题、IRIS数据集以及泊松脉冲序列的测试,表明这种多脉冲发放的SNN比单脉冲发放的SNN能够更有效地传递信息,提高学习速度.A more biologically plausible spiking response model (SRM) is presented to cope with the learning problem of spiking neural networks (SNN) in which neurons can spike multiple times. In constructing this model, the dependence of the postsynaptic potential upon the firing times of the postsynaptic neuron is not neglected. We derive an additional error back-propagation learning rule for the coefficient of the refractoriness function. The algorithm has been tested on classification tasks of XOR problem, IRIS dataset and Poisson spike trains. The results show that the SRM based SNN with neurons that fire multiple spikes can transfer information more efficiently and speed up training compared to SNN with neurons that fire only once.
关 键 词:SPIKING神经网络 多脉冲 SRM模型 不应期
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200