检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆大学自动化学院,重庆400030 [2]重庆工商大学计算机科学与信息工程学院,重庆400067
出 处:《重庆大学学报(自然科学版)》2008年第12期1391-1394,共4页Journal of Chongqing University
基 金:重庆市科委自然科学基金资助项目(CSTC2006BB2430)
摘 要:针对RBF(radial basis function)神经网络在预测铁水含硅量中出现的预测精度低,收敛速度慢的问题,提出了一种基于免疫识别原理的径向基函数神经网络的学习算法。该算法利用人工免疫原理确定高斯基函数的中心和宽度参数,同时将所识别的数据作为抗原,抗体作为抗原的压缩映射并作为神经网络的隐层中心,利用递推最小二乘法(recursion least square,RLS)确定连接权值,提高了RBF神经网络的收敛速度和精度。应用该模型于某大型钢铁厂高炉铁水硅含量预报的实例中,实验结果表明,该模型具有更高的预测精度和更短的训练时间。A radial basis function (RBF) neural network learning algorithm based on immune recognition was proposed to improve the low forecast precision and the slow convergence speed of such networks. In the algorithm, artificial immunity was used to determine the center and width parameters of the Gauss basis function. The recognized data were regarded as antigens and the compression mapping of antigens were taken as antibodies, i. e., the centers of the hidden layer. The recursion least square algorithm (RLs) was employed to determine the output layer weights. The algorithm improved the convergence speed and precision of the RBF neural networks. The model was applied to the blast furnace of a large iron and steel company. The results show that the model has forecast precision far superior to existing models and requires less training time than they do.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.69