检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:金如锋[1] 黄成钢 邱宏[3] 王中民[1] 黄品贤[1] 周霞[4] 王国复[5] 魏建子[6]
机构地区:[1]上海中医药大学预防医学教研室,上海201203 [2]江西省九江市疾病预防控制中心业务科 [3]香港中文大学公共卫生学院社区与家庭医学系 [4]山东中医药大学第二附属医院神经内科 [5]国家气象中心 [6]上海中医药大学针灸推拿学院
出 处:《现代预防医学》2008年第24期4866-4869,共4页Modern Preventive Medicine
基 金:上海市教委科研项目(05CZ01);上海市教委高校高水平特色发展项目(沪教委财(2005)81号)
摘 要:[目的]对我国某地区的肺结核年发病率进行预测。[方法]采用2000~2005年的年发病率建立GM(1,1)模型。采用2000~2005年月发病率建立ARIMA(p,d,q)(P,D,Q)s模型,并结合同期气象因素,建立多元线性回归模型和BP人工神经网络模型。以2006年的实际年发病率验证4种模型的预测效果,评价指标为相对误差。选取相对误差最小的预测模型为最佳预测模型。[结果]GM(1,1)模型、ARIMA模型、多元线性模型、BP人工神经网络模型对2006年肺结核年发病率的预测值分别为126.18/10万、126.84/10万、98.95/10万和111.19/10万。以上4个模型的相对误差依次为19.84%、20.49%、5.39%和4.86%。BP人工神经网络模型为最佳预测模型。[结论]对于肺结核发病率的预测,应同时拟合几种模型,并选择其中拟合效果最好的一种模型。[ Objective] To forecast yearly incidence of tuberculosis in a city. [ Methods] Grey System GM (1, 1 ) model was developed based on the yearly incidence from 2000 to 2005. The ARIMA (p, d. q) (P, D, Q) s model was developed according to the monthly incidence from January 2000 to December 2005. And the data of meteorological factors during the same period was used as independent variable or input neuron to estimate multiple linear regression and back-propagation artifieial neural network. All of models were tested by the data in 2006. Relative error was used to validate the predictability of these models. The model with least relative error would be chosen as the best model to forecast the incidence of next years. [ ReSults 3 The estimated yearly incidence of tuberculosis in 2006 predicted by GM (1, 1 ), ARIMA. multiple linear regression and back-propagation artificial neural network was 126.18/105, 126.84/105, 98.95/105 and 111.19/105. respectively. And their corresponding relative errors were 19.84%, 20.49%. 5.39% and 4.86%. respectively. Back-propagation artificial neural network was the preferable model for forecasting. [Conclusion] Several models should be estimated to forecast incidence of tuberculosis, and the best fitted model would be chosen for forecasting.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145