检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工程大学计算机学院,哈尔滨150001 [2]哈尔滨工业大学,哈尔滨150001
出 处:《电子与信息学报》2008年第12期2926-2929,共4页Journal of Electronics & Information Technology
基 金:国家自然科学基金(60575042,60603092);国家教育部博士点专向基金(20070217043)资助课题
摘 要:词义消歧一直是自然语言处理领域的关键问题和难点之一。通常把词义消歧作为模式分类问题进行研究,其中特征选择是一个重要的环节。该文根据贝叶斯假设提出基于信息增益的特征选择方法,并以此改进贝叶斯模型。通过信息增益计算,挖掘上下文中词语的位置信息,提高贝叶斯模型知识获取的效率,从而改善词义分类效果。该文在8个歧义词上进行了实验,结果发现改进后的贝叶斯模型在消歧正确率上比改进前平均提高了3.5个百分点,改进幅度较大,效果突出,证明了该方法的有效性。Word Sense Disambiguation (WSD) is one of the key issues and difficulties in natural language processing. WSD is usually considered as an issue about pattern classification to study, which feature selection, is an important component. In this paper, according to NaYve Bayesian Model (NBM) assumption, a feature selection method based on information gain is proposed to improve NBM. Location information concealed in the context of ambiguous word is mined through information gain, to improve the knowledge acquisition efficiency of Bayesian model, thereby improving the word-sense classification. The eight ambiguous words are tested in the experiment. The experimental results show that improved Bayesian model is more correct than the NBM an average of 3.5 percentage points. The accuracy rise is bigger and the improvement effect is outstanding. These results prove also the method put forward in this paper is efficacious.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249