检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:程焱[1,2] 周焰[3] 林洪涛[1] 潘恒辉[1]
机构地区:[1]空军雷达学院研究生管理大队 [2]海军92602部队 [3]空军雷达学院信息与指挥自动化系
出 处:《遥感技术与应用》2008年第6期721-728,共8页Remote Sensing Technology and Application
基 金:国家自然科学基金资助项目(40101019)
摘 要:将SIFT特征用于遥感及航拍影像的配准和拼接,并针对RANSAC算法在SIFT特征匹配中效率低、同时还需要估计内点噪声均方差作为误差数据的门限等不足,采用一种基于投影的M估计算法,利用最优化准则和输入数据的内在联系绕开鲁棒估计对噪声均方差的依赖性。实验结果表明,对航空和航天遥感影像SIFT特征在一定程度的视点变化、光照变化、分辨率不同等情形下,该方法具有稳定、快速、可靠等特点。M估计则有效地解决了对于不同输入数据的门限选择,真正实现了无人工干预的自动配准。In this paper, SIFT feature is introduced into automatic registration and mosaic of remote sensed imagery and aerial imagery. Considering to the low efficiency of RANSAC algorithm and the estimation of the scale of inliers noise which refer to ,we presents a feature matching approach called projected based M- estimator to resolve the matching problem, which can escape from human-interaction in automatic system. Numerous experiments have been conducted for both aerial and satellite imageries under various conditions such as geometric distortion, illumination variation and different resolution. The result showed that our matching approach performs well and is stable, reliable, efficient and automatic. The M-estimate can achieve authentically automatic registration without human-interaction in despite of different input data with different scale of inliers noise.
关 键 词:SIFT特征匹配 图像配准 RANSAC M估计
分 类 号:TP75[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.67