一类非线性项变号的奇异p-Laplacian动力方程正解的存在性  被引量:3

Existence of Positive Solutions to a Singular p-Laplacian Dynamic Equation with Sign Changing Nonlinearity

在线阅读下载全文

作  者:苏有慧[1,2] 李万同[2] 

机构地区:[1]徐州工程学院数理学院,徐州221008 [2]兰州大学数学与统计学院,兰州730000

出  处:《数学学报(中文版)》2009年第1期181-196,共16页Acta Mathematica Sinica:Chinese Series

基  金:国家自然科学基金资助项目(10571078);教育部高等学校教学科研奖励计划

摘  要:考虑了非线性项是变号的m-点奇异p-Laplacian动力方程(p(u~△(t)))~▽+ q(t)f(t,u(t))=0,t∈(0,T)_T,u(0)=0,_p(u~△(T))=sum from i=1 to m-2_i(u~△(ξ_i)),其中_p(s)= |s|^(p-2)s,p>1,ξ_i:R→R是连续的、不增的,0<ξ_1<ξ_2<…<ξ_(m-2)<ρ(T).利用Schauder不动点定理和上下解方法,证明了上述边值问题正解的一些存在性法则.这些结果在相应的微分方程(T=R)、差分方程(T=Z)以及通常的测度链上都是新的.特别是,如果非线性项容许变号,那么Sun和Li的结果[Appl.Math.Comput.,2006,182:478-491]仅仅是我们所得结果在相应微分方程(T=R)的一种特殊情形.作为应用,给出了一个例子验证了主要结果.This paper is concerned with the following m-point singular p-Laplacian dy- namic equation (ψp(u^△(t)))↓△+q(t)f(t,u(t))=0,t∈(0,T)T,u(0)=0,ψp(u^△(T))=∑i=2 ^m-2 ψi(u^△(ξi)) , where ψp(s)=|s|p^-2s with P〉1,ψi:R→R is continuous and nondecreasing, 0〈ξ1〈∈2〈…〈ξm-2〈p(T). The nonlinearity term is allowed to change sign. By using the Schauder fixed point theorem together with upper and lower solutions method, some existence criteria are established for positive solutions of the boundary value problem. These results are new even for the corresponding differential (T = R and difference equation (T = Z), as well as general time scales setting. In particular, if the nonlinear term is allowed to change sign, then the problem of Sun and Li [Appl. Math. Comput., 2006, 182:478 491] is only a special case of our problem for the corresponding differential equation (T = R). As an application, an example is given to illustrate these results.

关 键 词:测度链 边值问题 正解 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象