检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学力学与土木建筑学院,陕西西安710072 [2]大连理工大学工业装备结构分析国家重点实验室,辽宁大连116023
出 处:《西北工业大学学报》2008年第6期689-692,共4页Journal of Northwestern Polytechnical University
基 金:国家自然科学基金(10572119、10772147和10632030);高校博士点基金(20070699028);西北工业大学基础研究基金;大连理工大学工业装备结构分析国家重点实验室开放基金资助
摘 要:文章基于Bridges意义下的多辛理论构造了广义Benjamin-Bona-Mahoney方程的多辛偏微分方程组,利用变分原理得到了多种守恒律,构造了一种等价于Preissmann格式的隐式多辛格式。钟状孤波解的数值模拟结果表明该多辛格式具有较好的长时间数值稳定性。Aim. Many practical problems are nonlinear but linearization often brings poor long-time numerical behavior. To overcome this shortcoming, we propose constructing the muhi-symplectic formulation of the generalized BBM equation. In the full paper, we explain our muhi-symplectic algorithm in some detail; in this abstract, we just add some pertinent remarks to naming the first two sections of the full paper. Section 1 is: the muhi-symplectic formulation of the generalized BBM equation and its conservation laws. In section 1, we derive eq. (6) as the muhi-symplectic formulation and eqs. (7), (8) and (9) as its conservation laws. Section 2 is: the multi-symplectic Preissmann scheme and its equivalent formulation. In section 2, we rewrite the well-known Preissmann scheme as eq. (10) and derive its equivalent formulation as shown in eq. (11). Finally, we do the numerical simulation of the bell-shaped solitary wave solution of the generalized BBM equation. The simulation results, shown in Figs. 1 through 3 in the full paper, indicate preliminarily that our muhi-symplectic algorithm does have stable long-time numerical behavior.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222