检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北师范大学数学与信息科学学院,甘肃兰州730070 [2]兰州城市学院数学学院,甘肃兰州730070
出 处:《兰州大学学报(自然科学版)》2008年第6期91-95,共5页Journal of Lanzhou University(Natural Sciences)
基 金:甘肃省自然科学基金(3ZS061-A25-015);甘肃省教育厅科研项目(0601-21)资助.
摘 要:研究满足零因子性质的幂级数McCoy环、相对于幺半群的McCoy环和相对于幺半群的Armen- dariz环.得到了若R是交换的幂级数McCoy环,则R[x],R[x,x^(-1)]是McCoy环.对于整域R和R-模N,证明了R⊕N是幂级数McCoy环当且仅当N是右幂级数McCoy R-模.对于幺半群M,证明了若(?)R_i是M-McCoy环,则每个环R_i是M-McCoy环.同时给出了R[M]是Armendariz环和R[x]是M-Armenda- riz环的充分条件.Power-series McCoy rings, McCoy rings and Armendariz rings related to a monoid satisfying a zero-divisor property were investigated. The results show that if a commutative ring R is power-serieswise McCoy, then R[x] and R[x, x^-1] are McCoy rings, and that R + N is a power-serieswise McCoy ring if and only if N is a right power-serieswise McCoy R-module, where R is an integral domain and N is an R-module. For a monoid M, it is proved that if ∏(i∈I) R4 is an M-McCoy ring, then each ring Ri, i∈I, is M-McCoy. Furthermore, some sufficient conditions for R[M] to be Armendariz and R[x] to be M-Armendariz were obtained.
关 键 词:幂级数McCoy环 幂级数Armendariz环 M—McCoy环 M—Armendariz环 直积 零因子
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.189.186.244